Maklumat

Adakah mungkin menjejaskan otak dengan gelombang elektromagnet?

Adakah mungkin menjejaskan otak dengan gelombang elektromagnet?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Otak manusia boleh menghasilkan isyarat elektrik. Jadi ia menjana medan magnet juga. Adakah mungkin menjejaskan otak dengan gelombang elektromagnet?


Seseorang boleh menggunakan rangsangan magnet transkranial untuk memodulasi aktiviti saraf. Ini secara berkesan mendorong arus dalam tisu di bawah gegelung magnetik.


Rahsia Minda dan Realiti - MindReality.com

Terima "Matriks Realiti Minda - Lihat Dunia Dalam Kod" Ebook sebagai Hadiah Percuma saya kepada Anda!

Daftar masuk disini:

REALITI MAGI Facebook

Halaman Facebook REALITY MAGI adalah Dalam Talian! Saya menciptanya supaya saya boleh berhubung dengan semua orang yang mengetahui tentang Realiti Minda. LIKE page ini jika anda ingin mengetahui LEBIH BANYAK Rahsia Alam Semesta Terbongkar!

Rahsia Penciptaan Realiti!
Manfaatkan Kuasa Tertinggi Alam Semesta dan Alami Kehidupan yang Penuh Kekayaan, Kebebasan dan Kebahagiaan Sepenuhnya!

Kuasa Uberman!
Pergi Jauh ke Lubang Arnab, Pelajari Teknik Baharu yang Berkuasa untuk Mencipta Kehidupan yang Anda Inginkan, Menjadi Hebat!

Laman Web Genius yang Hebat!
Temui lebih banyak maklumat di tapak web saya yang lain sambil saya berkongsi Cerapan Genius Yang Hebat Dalam Segala-galanya!

REALITI MAGI
REALITY MAGI ialah syarikat induk bagi Mind Reality. Jadilah Ahli Majusi Besar dalam Mencipta Takdir dan Realiti Anda Sendiri!


Medan Elektrik & Magnet

Medan elektrik dan magnet (EMF) ialah kawasan tenaga yang tidak kelihatan, sering dirujuk sebagai Radiasi , yang dikaitkan dengan penggunaan kuasa elektrik dan pelbagai bentuk pencahayaan semula jadi dan buatan manusia. EMF biasanya dikumpulkan ke dalam salah satu daripada dua kategori mengikut kekerapannya:

  • Tidak mengion: sinaran tahap rendah yang secara amnya dianggap tidak berbahaya kepada manusia
  • Mengion: sinaran tahap tinggi yang berpotensi untuk kerosakan selular dan DNA
  • Frekuensi Sangat Rendah (ELF)
  • Frekuensi Radio (RF)
  • Ketuhar gelombang mikro
  • Cahaya Visual
  • Ketuhar gelombang mikro
  • Komputer
  • Meter pintar tenaga rumah
  • Rangkaian wayarles (wifi).
  • Telefon bimbit
  • Peranti Bluetooth
  • Talian kuasa
  • MRI
  • Ultraviolet (UV)
  • X-Ray
  • Gamma
  • Cahaya matahari
  • X-Ray
  • Beberapa Sinar Gamma

Bolehkah EMF memudaratkan kesihatan saya?

Semasa 1990-an, kebanyakan penyelidikan EMF tertumpu pada pendedahan frekuensi yang sangat rendah yang berpunca daripada sumber kuasa konvensional, seperti talian kuasa, pencawang elektrik atau peralatan rumah. Walaupun beberapa kajian ini menunjukkan kemungkinan hubungan antara kekuatan medan EMF dan peningkatan risiko untuk Leukemia kanak-kanak, penemuan mereka menunjukkan bahawa perkaitan sedemikian adalah lemah. Beberapa kajian yang telah dijalankan ke atas orang dewasa tidak menunjukkan bukti hubungan antara pendedahan EMF dan kanser dewasa, seperti leukemia, kanser otak, dan kanser payudara.

Kini, pada zaman telefon selular, penghala wayarles dan Internet of things, yang semuanya menggunakan EMF, kebimbangan berterusan tentang kemungkinan sambungan antara EMF dan kesan kesihatan yang buruk. Pendedahan ini sedang dikaji secara aktif oleh NIEHS mengesyorkan pendidikan berterusan tentang cara praktikal untuk mengurangkan pendedahan kepada EMF.

Adakah telefon bimbit saya mengeluarkan sinaran EMF?

Telefon bimbit memancarkan satu bentuk sinaran frekuensi radio pada hujung bawah spektrum sinaran bukan pengion. Pada masa ini, bukti saintifik tidak mengaitkan penggunaan telefon bimbit secara muktamad dengan sebarang masalah kesihatan manusia yang buruk, walaupun saintis mengakui bahawa lebih banyak penyelidikan diperlukan.

Program Toksikologi Kebangsaan (NTP), yang beribu pejabat di NIEHS, baru sahaja menyelesaikan kajian haiwan terbesar, setakat ini, mengenai pendedahan frekuensi radio telefon bimbit. Untuk ringkasan penemuan, sila lawati siaran akhbar kami dan halaman web Radiasi Frekuensi Radio Telefon Bimbit NTP .

Bagaimana jika saya tinggal berhampiran talian elektrik?

EMF: Medan Elektrik dan Magnet Berkaitan dengan Penggunaan Buku Kecil Kuasa Elektrik

Adalah penting untuk diingat bahawa kekuatan medan magnet berkurangan secara mendadak dengan peningkatan jarak dari sumber. Ini bermakna bahawa kekuatan medan yang mencapai rumah atau struktur akan menjadi jauh lebih lemah daripada di tempat asalnya.

Sebagai contoh, medan magnet berukuran 57.5 milligauss serta-merta di sebelah talian penghantaran 230 kilovolt mengukur hanya 7.1 miligauss pada jarak 100 kaki, dan 1.8 milligauss pada jarak 200 kaki, menurut Pertubuhan Kesihatan Sedunia pada 2010.

Untuk mendapatkan maklumat lanjut, lihat buku kecil pendidikan NIEHS, &ldquoEMF: Medan Elektrik dan Magnetik Berkaitan dengan Penggunaan Kuasa Elektrik&rdquo. Buku kecil ini, yang disediakan pada tahun 2002, mengandungi penyelidikan NIEHS terkini mengenai kesihatan dan medan elektrik dan magnet talian kuasa.

Bagaimanakah saya boleh mengetahui sama ada saya terdedah kepada EMF?

Jika anda bimbang tentang EMF yang dipancarkan oleh talian kuasa atau pencawang di kawasan anda, anda boleh menghubungi syarikat kuasa tempatan anda untuk menjadualkan bacaan di tapak. Anda juga boleh mengukur EMF sendiri dengan menggunakan gaussmeter, yang tersedia untuk pembelian dalam talian melalui beberapa peruncit.


Bagaimana teknologi wayarles boleh menjejaskan badan

Kebanyakan orang tidak berfikir dua kali untuk bercakap, menghantar mesej atau menghantar e-mel semasa dalam perjalanan — menghantar gelombang sinaran ke persekitaran dan badan mereka sambil terus berhubung melalui teknologi mudah alih.

Sebahagian besar penyelidikan ke dalam telefon bimbit dan menara asas mereka tidak menemui bukti muktamad bahawa penggunaan jangka pendek menimbulkan risiko kesihatan yang ketara kepada manusia. Jadi, penggubal dasar telah memberi lampu hijau kepada industri, membenarkan penggunaan gear wayarles meletup di seluruh dunia, kepada kira-kira lima bilion langganan wayarles di seluruh dunia, mengikut anggaran Pertubuhan Kesihatan Sedunia's.

Memandangkan teknologi itu telah digunakan secara meluas selama beberapa tahun, para penyelidik telah mengalihkan perhatian mereka untuk meneroka kemungkinan kesan pendedahan jangka panjang kepada medan elektromagnet (EMF) yang dihasilkan oleh gelombang radiofrekuensi yang digunakan untuk menghantar komunikasi telefon bimbit.

Pada Mei 2011, Agensi Antarabangsa untuk Penyelidikan Kanser WHO telah melakukan kajian semula penyelidikan sedia ada mengenai kesan pendedahan kepada medan elektromagnet tersebut. Ia mendapati bahawa, bagi kebanyakan kanser, bukti yang ada tidak mencukupi untuk membuat sebarang kesimpulan tentang risiko.

Dalam kes glioma, sejenis kanser otak, dan neuroma akustik, tumor bukan kanser yang tumbuh perlahan di telinga dalam yang mengakibatkan kehilangan pendengaran, bukti sedia ada adalah terhad. Ini bermakna kumpulan itu mendapati bahawa bukti hubungan sebab akibat antara pendedahan sinaran telefon bimbit dan peningkatan risiko mengembangkan salah satu penyakit tersebut adalah boleh dipercayai tetapi tidak dapat menolak bahawa peluang atau berat sebelah telah memainkan peranan dalam mewujudkan hubungan itu.

Namun begitu, kumpulan itu mendapati bahawa dalam kes glioma, buktinya cukup signifikan untuk menjamin pengkelasan medan elektromagnet frekuensi radio sebagai "kemungkinan karsinogenik kepada manusia," kategori WHO yang dikenali sebagai 2B, dan untuk menjamin kajian lanjut tentang kemungkinan hubungan antara penggunaan wayarles dan risiko kanser, kata kumpulan itu.

Untuk membantu meletakkan ini dalam perspektif, kopi dan racun perosak DDT juga diklasifikasikan sebagai "kemungkinan karsinogenik kepada manusia."

Tinjauan awal penyelidikan yang dilakukan oleh Suruhanjaya Eropah dan saintis Sweden, yang hasilnya diterbitkan dalam jurnal Occupational and Environmental Medicine, mendapati beberapa bukti peningkatan risiko relatif glioma dan neuroma akustik selepas lebih daripada 10 tahun penggunaan telefon bimbit. Tetapi kajian ini juga mengatakan majoriti kertas mengenai topik itu melaporkan tiada hubungan antara 10 tahun penggunaan telefon bimbit dan penyakit.

Satu lagi kajian - diterbitkan pada 27 Julai 2011, dalam Journal of the National Cancer Institute - melihat kanak-kanak dari Norway, Denmark, Sweden dan Switzerland, berumur 7 hingga 19. Ia mendapati bahawa mereka yang mempunyai tumor otak secara statistik tidak lebih berkemungkinan telah pengguna telefon bimbit biasa daripada subjek kawalan.

Data sokongan di kedua-dua belah perbahasan adalah terhad. Health Canada, Pentadbiran Makanan dan Dadah di A.S. dan Kesatuan Eropah telah mendasarkan peraturan telefon bimbit mereka pada majoriti bukti yang tersedia setakat ini.

Siapa yang menggunakan wayarles

Teknologi telefon bimbit sudah sebati dengan budaya Kanada — terutamanya di pusat bandar. Lebih daripada 24 juta daripada kami menggunakan telefon bimbit menjelang akhir tahun 2010, menurut Health Canada.

Persatuan Telekomunikasi Tanpa Wayar Kanada menganggarkan 70 peratus penduduk di pusat bandar utama di Kanada menggunakan teknologi telekomunikasi tanpa wayar, dengan beberapa kawasan menghampiri 80 peratus.

Membuat panggilan suara pada peranti mudah alih dan bukannya menghantar e-mel atau menghantar mesej teks menimbulkan kebimbangan kesihatan yang berpotensi, kerana tahap pendedahan pengguna kepada tenaga frekuensi radio adalah lebih tinggi semasa panggilan. Bercakap menggunakan telefon bimbit memerlukan lebih banyak kuasa daripada menghantar dan menerima teks atau maklumat lain, dan telefon bimbit biasanya dipegang lebih dekat dengan badan anda semasa anda bercakap berbanding semasa anda menggunakan peranti untuk tujuan lain.

Jumlah sinaran — dalam kes ini, gelombang elektromagnet yang dipancarkan oleh telefon bimbit — yang menembusi badan anda sebahagian besarnya berdasarkan jarak peranti dengan kepala anda semasa panggilan, bilangan panggilan telefon yang anda buat dan tempoh panggilan anda bertahan.

Adakah semuanya dalam kepala kita?

Menurut WHO, Health Canada, FDA dan laporan EC, sebahagian besar penyelidikan saintifik tidak menemui hubungan yang signifikan antara penggunaan telefon bimbit dan kesan kesihatan yang buruk.

Kajian semula penyelidikan EC telah menemui beberapa bukti bahawa tenaga frekuensi radio boleh menyebabkan perubahan suhu tempatan dalam otak, mengubah struktur dan ekspresi protein, dan menjejaskan biokimia neurotransmitter.

Soal kuasa

Jika telefon bimbit memancarkan gelombang yang serupa dengan frekuensi ketuhar gelombang mikro, dan kita memegang telefon bimbit dekat dengan kepala kita, bolehkah kita memasak tengkorak kita?

Menurut agensi perlindungan kesihatan United Kingdom, kenaikan suhu maksimum di kepala akibat penyerapan tenaga daripada telefon bimbit adalah sekitar 0.1ºC — jauh berbeza daripada apa yang dilakukan oleh ketuhar gelombang mikro kepada makan malam beku.

Tony Muc, penolong profesor di Universiti Toronto dan ketua ahli fizik di Perundingan Kesihatan dan Keselamatan Radiasi yang berpangkalan di Toronto, menjelaskan perbezaannya terletak pada jumlah kuasa yang digunakan oleh setiap peranti. Kebanyakan telefon bimbit beroperasi pada tahap kuasa antara 0.2 hingga 0.6 watt.

Purata gelombang mikro isi rumah menjana 500 hingga 1,000 watt, menurut B.C. Pusat Kawalan Penyakit.

Muc berkata, dengan telefon bimbit, "anda mempunyai sumber kecil ini yang dikuasakan oleh bateri yang anda pegang dalam jarak satu sentimeter dari kepala anda, kira-kira 1,000 kali lebih lemah [daripada ketuhar gelombang mikro].

"Jadi kesan bersih [telefon bimbit] masih boleh diabaikan — sama seperti kesan bersih ketuhar gelombang mikro boleh diabaikan, kerana walaupun ia lebih kuat, anda berada lebih jauh."

Boleh dikatakan bahawa walaupun medan elektromagnet, asas untuk komunikasi selular, telah dikaji secara meluas, teknologi mudah alih adalah unik kerana telefon bimbit digunakan dalam jarak yang begitu dekat dengan badan kita. Namun begitu, Muc berkata penyelidikan selama beberapa dekad ke dalam medan elektromagnet telah memberikan kami maklumat yang mencukupi untuk menolak "prinsip berjaga-jaga" sebagai tindakan terbaik dalam hal komunikasi tanpa wayar.

Kedua-dua kajian EC dan Perubatan Pekerjaan dan Alam Sekitar menemui bukti bahawa sinaran telefon bimbit mungkin mempengaruhi beberapa tingkah laku manusia, seperti perhatian dan ingatan.

Laporan EC juga menyemak penyelidikan terdahulu tentang kemungkinan kaitan antara penggunaan telefon mudah alih dan tumor otak pada kanak-kanak dan membuat kesimpulan bahawa siasatan lanjut terhadap isu itu adalah "warranted" memandangkan penggunaan telefon bimbit secara meluas dalam kalangan kanak-kanak dan remaja dan kekurangan kajian yang relevan melihat kemungkinan kesan. pada kumpulan ini.

U.K., Jerman, Belgium, Israel, Rusia, Perancis dan India menasihatkan kanak-kanak mengehadkan penggunaan telefon bimbit mereka.

Pada Oktober 2011, Health Canada mengubah sedikit garis panduannya sebelum ini untuk menggalakkan warga Kanada mengehadkan panggilan telefon bimbit, terutamanya mereka yang berumur di bawah 18 tahun.

Sebelum ini, Health Canada berkata orang ramai boleh mengehadkan penggunaan mereka jika mereka bimbang tentang kemungkinan kaitan antara telefon bimbit dan kanser.

James McNamee, ketua bahagian untuk kesan kesihatan dan penilaian dalam biro perlindungan sinaran klinikal dan pengguna Health Canada, berkata agensi itu cuba menjadi lebih proaktif mengenai mesejnya untuk kanak-kanak.

"Terdapat sedikit sains yang dilakukan ke atas kanak-kanak dan penggunaan telefon bimbit kanak-kanak, dan kanak-kanak akan menggunakan peranti ini untuk tempoh yang lebih besar dalam jangka hayat mereka," kata McNamee. "Otak dan sistem imun mereka masih berkembang."

Health Canada berkata pengguna telefon bimbit mungkin mengambil langkah praktikal untuk mengurangkan pendedahan, seperti:

  • Hadkan tempoh panggilan telefon bimbit.
  • Gantikan panggilan telefon bimbit dengan mesej teks atau gunakan peranti "hands-free".
  • Galakkan mereka yang berumur di bawah 18 tahun untuk mengehadkan penggunaan telefon bimbit.

Dengan penyelidik kekurangan garis masa, dan oleh itu data, untuk mengambil pendirian muktamad mengenai kesan kesihatan jangka panjang telekomunikasi mudah alih, beberapa organisasi, seperti ahli Laporan BioInitiative, Agensi Alam Sekitar Eropah, dan Kumpulan Dasar EMR, berkata undang-undang semasa yang mengawal selia penggunaan peranti elektromagnet harus dipertimbangkan semula.

Pendirian mereka, yang mereka katakan mengikut "prinsip berjaga-jaga," ialah jika kita tidak dapat memastikan sesuatu tidak akan memberi kesan negatif kepada kesihatan kita, kita harus tersilap langkah berhati-hati.


Jawapan pendek
Gelombang otak bukan gelombang elektromagnet.

Jawapan panjang
Aktiviti otak yang diukur, seperti yang telah anda nyatakan, adalah hasil daripada penembakan neuron individu. Aktiviti itu wujud, sebenarnya, daripada dua bahagian. Pertama sekali, terdapat potensi tindakan (AP). AP ialah aliran semasa dalam neuron dari satu hujung ke hujung yang lain. Magnitud AP ini (dan penjumlahan banyak) adalah sangat rendah walau bagaimanapun, ia hampir tidak boleh diukur.

Aktiviti otak sebenar yang boleh kita ukur adalah hasil daripada cara kedua pengaliran isyarat: potensi pasca sinaptik hasil daripada neurotransmitter. (Pyramidal) Neuron berkomunikasi antara satu sama lain melalui neurotransmitter, yang dilepaskan daripada berbilang sinaps dan mengalir ke akson neuron seterusnya. Pembebasan neurotransmiter menyebabkan perbezaan potensi yang lebih besar yang dijalankan melalui tisu yang berbeza (contohnya tulang dan kulit). Oleh itu, aktiviti yang kita ukur dengan EEG hanyalah hasil daripada perbezaan potensi neuron piramid. Disebabkan oleh cara medan elektrik berfungsi, kami hanya dapat mengukur neuron yang berorientasikan pada sudut tepat ke permukaan kulit kepala (lihat gambar kanan).

Medan magnet juga boleh diukur, tetapi ini sebenarnya adalah hasil daripada aliran arus. Jika elektrik mengalir melalui gelung, medan magnet terhasil. Lebih-lebih lagi, jika terdapat medan magnet, arus elektrik akan dijana. Inilah cara MEG berfungsi. Jika terdapat arus elektrik, dan anda meletakkan gelung ini di sekeliling kepala, medan magnet akan "tertangkap". Kemudian, seterusnya, medan magnet ini akan menghasilkan tenaga elektrik dalam peralatan rakaman MEG, seterusnya merekodkan aktiviti elektrik di dalam otak (Lihat bahagian kiri gambar, terdapat dua gelung di mana medan magnet dilalui). Medan magnet adalah ortogon dengan medan elektrik (cari peraturan tangan kanan) dan neuron yang terletak selari dengan kulit kepala lebih mudah diukur. EEG dan MEG saling melengkapi antara satu sama lain, dan menggabungkannya sangat meningkatkan penyetempatan aktiviti.

Ini adalah penjelasan yang cepat dan kotor. Untuk yang lebih baik, anda mungkin ingin membaca buku Luck: An Introduction to the Event-Related Potential Technique (2014), yang menerangkannya dengan sangat baik.

Jawapan pendek
Gelombang otak biasanya dikaitkan dengan electroencephalogram, yang merupakan isyarat terutamanya terdiri daripada perbezaan potensi yang dihasilkan dalam lapisan cetek otak. Perbezaan potensi mewakili medan elektrik dan tidak mewakili sinaran elektromagnet (EM). Sinaran EM terbina daripada paket tenaga (foton). Jenis sinaran EM dicirikan dan dikelaskan mengikut panjang gelombang tertentu, tetapi ini tidak ada kaitan dengan gelombang otak.

Latar belakang
Sebagai tambahan kepada jawapan Robin Kramer yang sangat baik, saya ingin mendekati soalan ini dari pendekatan yang lebih istilah, iaitu apakah gelombang otak?

Gelombang otak adalah sedikit istilah bahasa sehari-hari. Ia biasanya dikaitkan dengan electroencephalogram (EEG). Ukuran EEG perbezaan keupayaan elektrik, biasanya merentasi kulit kepala (Gamb. 1). Aktiviti elektrik yang terpancar dari otak ini dipaparkan dalam bentuk gelombang otak. Terdapat empat kategori gelombang otak ini. Kategori ini adalah berdasarkan jalur frekuensi. Istilah jalur frekuensi adalah istilah yang lebih formal dan merujuk kepada cara EEG biasanya dianalisis, iaitu melalui transformasi Fourier. Transformasi Fourier membedah mana-mana isyarat berasaskan masa kepada beberapa gelombang sinus yang jelas, setiap satu dengan frekuensi ciri, dinyatakan dalam kitaran sesaat (i.e., Hz).

Apabila otak terangsang dan terlibat secara aktif dalam aktiviti mental, ia menjana gelombang beta. Gelombang beta ini mempunyai amplitud yang agak rendah, dan merupakan yang terpantas daripada empat gelombang otak yang berbeza (jalur frekuensi 15 hingga 40 Hz). Gelombang alfa (9 - 14 Hz) mewakili bukan rangsangan, lebih perlahan dan lebih tinggi dalam amplitud. Seseorang yang telah menyelesaikan tugasan dan duduk berehat selalunya berada dalam keadaan alfa. Negeri seterusnya, gelombang otak theta (5 - 8 Hz), biasanya mempunyai amplitud yang lebih besar dan frekuensi yang lebih perlahan. Julat frekuensi ini biasanya antara 5 dan 8 kitaran sesaat. Seseorang yang telah mengambil cuti daripada tugas dan mula berkhayal selalunya berada dalam keadaan gelombang otak theta. Seseorang yang memandu di lebuh raya, dan mendapati bahawa mereka tidak dapat mengingati lima batu terakhir, selalunya dalam keadaan theta yang disebabkan oleh proses pemanduan lebuh raya. Keadaan gelombang otak terakhir ialah delta (1.5 - 4 Hz). Di sini gelombang otak adalah amplitud terbesar dan frekuensi paling perlahan. Tidur yang nyenyak dan tanpa mimpi dicirikan oleh jalur frekuensi ini. Apabila kita tidur semalaman, gelombang otak biasanya turun dari beta, ke alpha, ke theta dan akhirnya, apabila kita tertidur, ke delta (sumber: Sci Am, 1997).

Aktiviti EEG diukur melalui elektrod dan ini mengambil beza potensi, atau medan elektrik. Medan elektrik bukan elektromagnet (EM), kerana ia tidak (semestinya) disertakan dengan komponen magnet. Medan elektrik dijana di mana-mana tempat di mana cas dipisahkan. Jika tiada arus mengalir, masih terdapat medan elektrik iaitu medan elektrik statik. Hanya apabila arus mula mengalir komponen magnet diperkenalkan (sumber: WHO). Di dalam otak, medan elektrik statik mungkin wujud, tetapi aktiviti EEG biasanya ditimbulkan oleh tembakan saraf yang berulang dan disegerakkan. Di dalam tisu, oleh itu, arus mengalir semasa penjanaan potensi tindakan dan oleh itu pasti terdapat komponen magnet yang terlibat, ini diukur dengan magnetoencephalogram (MEG).

MEG mengukur medan magnet dan biasanya tidak dianalisis dalam bentuk gelombang otak tetapi dalam bentuk imej otak (Rajah 2).


Rajah 2. Analisis MEG. sumber: Makmal Neurofisiologi Kognitif NYU

Isyarat MEG juga tidak Sinaran EM, tetapi isyarat magnetik.

Akhirnya, kemudian apa sinaran EM? Sinaran EM ialah a bentuk tenaga yang dihasilkan oleh gangguan elektrik dan magnet berayun, atau oleh pergerakan zarah bercas elektrik bergerak melalui vakum atau jirim. Medan elektrik dan magnet datang pada sudut tepat antara satu sama lain dan gabungan gelombang bergerak berserenjang dengan kedua-dua medan berayun magnet dan elektrik dengan itu gangguan. Sinaran elektron dilepaskan sebagai foton, yang merupakan berkas tenaga cahaya yang bergerak pada kelajuan cahaya sebagai gelombang harmonik terkuantasi. Tenaga ini kemudiannya dikumpulkan ke dalam kategori berdasarkan panjang gelombangnya ke dalam spektrum elektromagnet. Gelombang elektrik dan magnetik ini bergerak secara berserenjang antara satu sama lain dan mempunyai ciri-ciri tertentu, termasuk amplitud, panjang gelombang dan frekuensi (Rajah 3).

Yang penting, sinaran EM boleh bertindak sebagai a gelombang atau a zarah, iaitu a foton. Sebagai gelombang, ia diwakili oleh halaju, panjang gelombang, dan kekerapan. Sebagai zarah, EM diwakili sebagai foton, yang mengangkut tenaga. Foton dengan tenaga yang lebih tinggi menghasilkan panjang gelombang yang lebih pendek dan foton dengan tenaga yang lebih rendah menghasilkan panjang gelombang yang lebih panjang.

Jika "gelombang otak" menghasilkan potensi elektrik yang berubah-ubah masa seperti yang ditunjukkan pada EEG, maka setahu saya gelombang elektromagnet hadir. Saya telah diajar bahawa anda tidak boleh mempunyai masa mengubah potensi elektrik tanpa mencipta gelombang elektromagnet. Anda boleh cuba menyemak imbas penjelasan wiki https://en.wikipedia.org/wiki/Maxwell%27s_equations, tetapi idea utama ialah medan elektrik yang berbeza-beza masa tidak boleh wujud tanpa kehadiran medan magnet yang berubah-ubah masa. Saya mengakui saya pada asasnya tidak mempunyai pengetahuan latar belakang tentang gelombang otak, namun selepas membaca dua jawapan menyeluruh sebelum ini, saya tertanya-tanya mengapa gelombang otak tidak akan termasuk dalam kategori gelombang elektromagnet.

"Medan elektrik bukan elektromagnet (EM), kerana ia tidak (semestinya) disertai dengan komponen magnetik." Ini secara teorinya benar untuk medan elektrik statik, tetapi saya fikir medan elektrik statik adalah serupa dengan "keadaan vakum" dalam erti kata bahawa ia tidak wujud dalam kehidupan sebenar atau walaupun ia melakukannya, ia akan menjadi sangat sukar untuk diukur tanpa mengganggu sistem.

Gelombang tidak statik dan, oleh itu, EEG pasti menunjukkan medan elektrik yang berubah-ubah masa.

Secara tegas dari sudut pandangan dalam fizik, terdapat hanya 4 interaksi asas: graviti, elektromagnet, interaksi lemah dan interaksi kuat.

Interaksi yang lemah dan kuat hanya wujud dalam sub-atom, jadi mereka tidak akan menyumbang apa-apa kepada gelombang otak. Interaksi graviti, walaupun secara teorinya memberi kesan, adalah sangat kecil sehingga ia boleh diabaikan sama ada. Oleh itu, semua yang dilakukan oleh otak adalah elektromagnet. Malah, setiap proses kimia juga boleh dikatakan sebagai elektromagnet semata-mata.

Saya mesti menekankan ini adalah sudut pandangan fizik, kerana saya tahu dalam bidang lain, seperti biologi atau sains saraf, adalah tidak praktikal untuk mengumpulkan setiap bentuk interaksi elektromagnet dalam satu bakul. Medan elektrik, medan magnet, sinaran, interaksi Van de Waals, nama anda, adalah bentuk interaksi elektromagnet yang berbeza.

Apa yang boleh agak mengelirukan ialah dalam biologi atau neurosains, istilah itu elektromagnetik boleh digunakan untuk bentuk interaksi sedemikian: kewujudan bersama medan elektrik dan medan magnet. Itulah sebabnya kita boleh mengatakan bahawa medan elektrik bukan elektromagnet. Ini, dari sudut pandangan fizik, salah. Walau bagaimanapun, ini hanyalah tafsiran yang berbeza bagi istilah itu, jadi ahli biologi dan ahli sains saraf boleh menggunakan pernyataan itu dengan selamat.

Ini adalah soalan penting untuk beberapa sebab, tidak terkecuali adalah gabungan "gelombang otak" dengan EM atau gelombang radio dalam media popular dan juga dalam beberapa artikel dalam Scientific American. Tiga jawapan undian teratas pada ketika ini (Jun 2019) oleh Robin Kramer, AliceD, dan bobby walaupun nampaknya tidak konsisten, semuanya betul, tetapi kekurangan butiran yang boleh menyelesaikan ketidakkonsistenan yang jelas.

Sebagai permulaan, seperti yang dinyatakan oleh Robin dan AliceD, gelombang otak BUKAN gelombang elektromagnet (EM) gelombang otak ialah istilah yang diberikan kepada corak perbezaan voltan yang diukur antara dua elektrod yang disambungkan kepada matriks bendalir ekstrasel tiga dimensi yang mengelilingi otak (seperti yang ditunjukkan dengan cantik. oleh Robin). Matriks ini termasuk tengkorak dan kulit kepala subjek, dan kerana tengkorak mempunyai rintangan yang tinggi, arus yang akhirnya sampai ke kulit kepala adalah agak kecil dan menghasilkan voltan yang sangat kecil kerana ia mengalir melalui kulit kepala yang agak rintangan antara dua elektrod. . Semasa pembedahan tengkorak terbuka, EEG yang direkodkan dari permukaan otak adalah 10-100 kali lebih besar kerana arus tidak perlu mengalir keluar melalui tengkorak untuk mencapai elektrod dan kemudian kembali semula. Corak voltan ini sudah tentu naik dan turun, sekali gus menghasilkan "gelombang" dalam rekod EEG voltan berbanding masa seperti yang dijelaskan oleh AliceD.

Ini bukanlah pengertian yang sama bagi istilah "gelombang" yang digunakan dalam fizik untuk menggambarkan fenomena gelombang secara amnya ahli fizik bercakap tentang gelombang sebagai penyelesaian kepada persamaan gelombang pembezaan, termasuk persamaan Maxwell. Hanya dalam erti kata yang paling luas mengenai kemungkinan berkala fenomena yang menghasilkan turun naik dalam graf fenomena berbanding masa boleh kesamaan kedua-dua deria perkataan "gelombang" ini dapat dikenal pasti. Walau bagaimanapun, ambil perhatian bahawa penyelesaian ahli fizik untuk persamaan gelombang boleh menjadi agak umum, dan termasuk mana-mana gabungan fungsi penyelesaian yang diambil sebagai hujah (ax+bt) dan (ax-bt) mewakili penyelesaian perjalanan ke hadapan dan ke belakang. Oleh itu, nadi segi empat sama akan menyelesaikan persamaan gelombang, dan memandangkan mana-mana isyarat realistik mempunyai perwakilan Fourier, sebarang isyarat boleh dikatakan terdiri daripada jumlah wajaran "gelombang" sinus dan kosinus seperti yang diterangkan oleh AliceD, walaupun isyarat itu sendiri. tidak berkala.

Gelombang EM ialah penyelesaian kepada persamaan Maxwell yang membawa tenaga melalui ruang dengan cara menukar medan elektrik dan magnet yang boleh bergerak jauh dari tempat ia dilancarkan dan dikaitkan dengan tenaga medan jauh. Tenaga medan jauh ini tidak lagi dipengaruhi oleh sumbernya, begitu juga nasibnya tidak mempengaruhi sumbernya. Ini berbeza daripada tenaga dalam medan elektrik dan magnet yang berkaitan dengan aliran semasa dalam matriks ekstraselular ini dipanggil medan dekat, dan ia terdiri daripada kuasa motif yang memacu aliran semasa. Perhatian kepada butiran adalah penting di sini EEG tidak merekodkan medan elektrik, mereka merekodkan perbezaan potensi. Potensi ialah medan skalar dengan nilai berangka tunggal pada setiap titik dalam ruang dan tiada titik sifar mutlak - oleh itu perlu sentiasa mengukur perbezaan voltan (potensi) antara dua titik dan mempunyai sambungan ke litar matriks bendalir ekstraselular, manakala elektrik medan ialah medan vektor dengan magnitud dan arah pada setiap titik dalam ruang. Medan elektrik ialah kecerunan potensi, dan ini adalah arah arus akan mengalir dalam cecair ekstrasel isotropik. Menukar potensi pada titik dalam matriks ekstraselular akan mengubah medan elektrik medan dekat dan dengan itu corak aliran arus tiga dimensi dan sebarang perbezaan potensi yang direkodkan. Gelombang otak ialah perbezaan potensi yang terakhir ini disebabkan oleh tenaga medan dekat dalam medan elektrik dan magnet, dan berasingan daripada kesan medan jauh tenaga terpancar dalam bentuk gelombang EM.

Sekarang, bobby menegaskan bahawa perubahan potensi perbezaan yang mewakili gelombang otak membayangkan perubahan medan elektrik yang, seperti yang dikatakan oleh Maxwell, menghasilkan medan magnet yang berubah-ubah, yang seterusnya menghasilkan medan elektrik yang berubah-ubah, dsb - dan kita pergi ke perlumbaan: EM gelombang dilancarkan! Atau inikah?

Seseorang memerlukan peranti yang dipanggil antena untuk memindahkan voltan/arus yang berubah-ubah ke dalam dan gelombang EM, dan peraturan yang sangat asas untuk antena ialah ia hanya mula menukar sejumlah besar tenaga apabila saiz antena menghampiri 1/4 panjang gelombang isyarat sedang dipancarkan. Jadi mari kita lihat berapa besar antena kita perlu untuk gelombang alfa 10 Hz untuk dilancarkan dari kulit kepala kita. Oleh kerana gelombang EM bergerak pada kelajuan cahaya, atau 300,000,000 m/s, kulit kepala kita mestilah berukuran 75,000,000 meter! Saya tidak mempunyai persamaan di sini, tetapi agak jelas bahawa pada asasnya tenaga sifar pada 10 Hz akan dipancarkan. Dan jika seseorang ingin mengambil isyarat itu, antena penerima mestilah sama besar! Tujuh puluh lima Megameter cukup besar.

Inilah sebabnya mengapa elektrod EEG perlu menyentuh kulit kepala atau sebaliknya menyambung ke litar sebenar di mana arus mengalir dan bukannya hanya diletakkan berdekatan untuk mengambil tenaga EM yang dipancarkan dari otak. Dan walaupun benar beberapa helah boleh ditarik (seperti yang dilakukan dalam antena dielektrik telefon bimbit) untuk mengurangkan saiz ini dengan mungkin satu faktor sepuluh, walaupun untuk isyarat 100Hz atau 1000Hz, hampir tiada tenaga akan terpancar dari kulit kepala, gelombang EM juga tidak akan diambil dan ditukar kepada potensi yang berubah pada kulit kepala daripada persekitaran EM di sekeliling kita. Telefon bimbit boleh menjadi kecil kerana ia menggunakan isyarat dalam julat 3 GHz dengan 1/4 daripada panjang gelombang adalah kira-kira 2.5 cm, atau satu inci.

Jadi, walaupun mungkin terdapat gelombang EM yang dihasilkan oleh "gelombang" otak, secara praktikalnya, ia tidak berlaku, dan melihat secara terperinci bagaimana gelombang EM dipancarkan mendedahkan bahawa "gelombang" otak, sebenarnya, fenomena yang berbeza. daripada mana-mana gelombang EM yang mungkin dikaitkan atau dijana.

Mungkin cara paling ringkas untuk menentukan perbezaannya ialah dengan mengambil perhatian bahawa gelombang EM terdiri daripada paket tenaga yang merambat melalui ruang melalui penjanaan semula sendiri medan elektrik dan magnet yang berubah-ubah yang mempunyai unit volt/meter dan amp/meter, manakala "gelombang" otak adalah perbezaan voltan antara dua titik pada kulit kepala diukur dalam Volt - ambil perhatian bahawa ia mempunyai unit yang berbeza. Dengan "gelombang" otak, pada dasarnya tiada tenaga yang meninggalkan kulit kepala dan memancar ke angkasa kerana frekuensinya terlalu rendah dan kulit kepala adalah jauh ke kecil untuk bertindak sebagai antena yang berkesan untuk menukarnya menjadi gelombang EM.


Adakah mungkin untuk menjejaskan otak dengan gelombang elektromagnet? - Biologi

Saya telah memikirkan perkara ini sejak sekian lama dan baru-baru ini telah dipecat untuk bertindak oleh ulasan yang saya buat dalam artikel lain “Membina Kepintaran Buatan yang Lebih Pintar Oleh. Mengecutkan Badan?” Satu pendekatan kepada kecerdasan buatan adalah untuk memodelkan aktiviti neuron sebagai litar elektrik dengan berbilang input dan berbilang output. Model ini mengandaikan bahawa setiap neuron individu hanya mempengaruhi neuron lain yang mempunyai hubungan langsung pada sinaps. Tetapi, kita juga tahu bahawa isyarat elektrik juga akan menghasilkan medan elektromagnet. Kita tahu otak secara keseluruhan melakukan ini kerana kita mempunyai kedua-dua electroencephalograms (EEG) dan magnetoencephalograms (MEG) yang boleh mengukur aktiviti elektrik dan magnet otak. Jadi, persoalan yang saya ingin bangkitkan ialah: Bolehkah neuron berkomunikasi antara satu sama lain melalui isyarat elektromagnet mereka serta melalui sinaps mereka?

Ini sebenarnya empat soalan: bolehkah medan elektromagnet mengaktifkan neuron? adakah neuron yang diaktifkan menjana medan elektromagnet? adakah medan itu cukup kuat untuk menjejaskan neuron jiran? dan adakah kesan itu cukup kuat untuk membawa maklumat? Seperti yang saya katakan di atas, kita tahu bahawa otak secara keseluruhannya menghasilkan medan EM, sehinggakan EEG standard dapat mengukur medan yang telah melalui tengkorak. Tetapi penyelidikan yang lebih baru dengan EEG intrakranial telah mendedahkan banyak aktiviti frekuensi tinggi yang diredam oleh tengkorak. Mula-mula mari kita lihat dengan cepat pada neuron.

Otak dan sistem saraf adalah struktur yang sangat kompleks yang aktivitinya dimodelkan pada interaksi neuron. Walaupun terdapat pengecualian, neuron asas mempunyai berbilang input (dendrit) dan berbilang output (satu akson dengan cabang). Neuron disambungkan antara satu sama lain melalui sinaps. Isyarat yang melalui sinaps boleh sama ada kimia (menggunakan neurotransmitter) atau elektrik. The signal that passes along a neuron is known as an ion pump as it is created by the movement of electrically charged ions across the neuron's membrane. The signals from the input dendrites are additive and the output axon is only triggered if a minimum activation potential is reached – input signals that are too weak are thus ignored. It is therefore tempting, as a first iteration, to model the information processing capacities of neurons as a complicated sequence of logic gates connected together by conducting wires. However, with an average of one hundred billion neurons, each with an average of 7,000 synaptic connection, the average cranial computer has about 400 trillion connections. This in itself is an onerous task to model.

But the brain is not a mass of insulated wires its electromagnetic activity leaks out enough to be measurable. The average signal measured by a typical EEG is about 10-100 microV compared to 10-20 milliV for a subdural probe – that's over 100 times stronger. The magnetic fields produced by the brain are much weaker and useful measurements have only been possible since the invention of SQUIDs (superconducting quantum interference devices). However, at 10 femtoTeslas (fT) for cortical activity and 103 fT for the human alpha rhythm, the brain's magnetic field is somewhat smaller than the ambient magnetic noise in an urban environment, which is on the order of 108 fT. Great care is needed in such research to screen the room from as much EM radiation as possible.

It is thought that these fields are generated from the current flowing through each neuron EEGs are considered to be the result of extracellular currents along dendrites whereas MEGs are due to intracellular ionic currents. However, these signals are averages of the activities of individual neurons they are the emergent behaviour of billions of neurons - it is thought that about 50,000 neurons are needed to produce a measurable signal with current equipment. Much more research needs to be done in this area. The magnetic signals, in particular, are very weak, and it is currently impossible to isolate the signal of an individual neuron. However, to answer our second question, neurons buat produce electromagnetic fields that extend beyond their physical structure.

It is time to look at what's actually thought to be going on at the level of the single neuron. The paper “Electric and magnetic fields inside neurons and their impact upon the cytoskeletal microtubules” is, I think, very useful in that although rather long it explains some basic electromagnetic theory along the way. It discusses the electromagnetic fields in dendrites, axons and soma, as well as the propagation of the ionic current and the electromagnetic effects at the synapses. Its main focus, however, is on giving a plausible theory on how microtubules may also be able to transmit information. There are still a lot of unknowns and a lot of research to be done. The authors reject outright the ferroelectric model of neurons as these ionic currents are very different to the electron currents in a metal conductor. The EM fields generated are much smaller than would be expected by a current due to a physical flow of charged particles.

What the paper actually focusses on are the interactions between EM fields and the cytoskeleton of a neuron, most importantly the microtubules. That electromagnetic inputs to the cortex have been shown to affect consciousness is proof that neurons can process an EM signal on its own as imparting information. The case of a blind man able to partially see through a camera connected via computer to electrodes implanted directly into his visual cortex goes all the way back to 1978. There was also an experiment in 1988 showing that two unconnected neurons would oscillate synchronously with an applied electric field. This is linked to the controversial topic of the 40Hz gamma wave signal that originates in the thalamus and sweeps across the brain like a metronome. The speed of this signal appears to be too fast to be carried by the ionic neural signal and therefore it seems plausible to look for an alternative. We can therefore answer our first question in the positive that EM fields external to a neuron can activate that neuron as if it had received a signal from its dendritic inputs. The final, and most fascinating, questions are whether the EM fields created by neuronal activity can thereby send signals and information to neighbouring neurons without going through a synaptic information exchange. This could be with neurons with which it has no connections with or it could strengthen, or attenuate, the synaptic signal.

I will try my best to summarize the above paper and then look at possible ways forward. Many people assume that there is no, or little EM field outside the neuron because of the insulating myelin sheath. However, that sheath only covers the axons, not the dendrites, and secondly it is not a continuous sheath (like around an electrical cable) but is a string of small sheaths with gaps in between them. This apparently allows for better conductivity in pulses but also means there is ionic activity at these nodes of Ranvier. The paper calculates that the electric fields generated by a neuron are of significant magnitude but that the magnetic fields are too small to affect even the signal transmission within a neuron, never mind propagating extraneuronally. However, the dendrites especially can both produce and react to fluctuating electric fields. For the moment, the answer to our third question is partially positive, although we have left unanswered how the measurable magnetic fields are produced. The paper then has a long section describing the structure of microtubules and their component tubulins.

Microtubules are part of a neuron's exoskeleton and are polymer tubes of tubulin, which exists as two polarized isomers. Imagine the microtubules as having three layers with the inner and outer layers negatively charged whereas the middle layer is positively charged. The paper puts forward a method by which tubulins can propagate a wave along the microtubules, combining electromagnetic properties with known biochemical ones. This is more than just a supportive structure and, as at the end it connects to the presynapse in axons it may be able to transmit its information to the next neuron. Experiments on microtubules have also discovered some astonishing properties, such as that they are able to propagate elastic waves at up to the Gigahertz range as well as acoustic waves up to 600 m/s. Also, as the microtubules are charged they may also show piezoelectric effects. These latter discoveries remain to be put into a coherent picture. Why a neuron would have two different modes of signal transmission is a mystery. Perhaps they are different facets of the same signal or perhaps it some kind of checksum to verify that the axonal signal is not a false positive. Pure speculation at this point.

All of this is tantalising but there are serious experimental difficulties in moving forward, not least of which is getting live data as there are laws against sticking probes into living people's brains. We are thereby forced to speculate based on the signals detected at the surface of the brain. Both electric and magnetic fields are measurable as emergent phenomena, but how a single neuron resonates within a nearby bundle is unknown but must surely involve EM propagation. Although the magnetic fields appear to be tiny for an individual neuron they become significant and measurable for resonating bundles. The quoted paper does not look at resonance effects which could be significant even at low field strengths. The subject of stochastic resonance is very recent but, I think, should yield some insights about a non-linear system like the brain and the importance of extracting valid signals from background noise. The 40 Hz electrical signal must have some purpose, whether the cause of consciousness or not, and therefore neurons must have the ability to respond to it. This is an area in which physics and neurology come together to further our understanding. But coming back to the original stimulus of a discussion about AI, I think that modelling the brain as mere physical connections of neurons (be they biochemical or electrical) is doomed to failure unless it also includes emergent extraneuronal phenomena such as electric and magnetic fields. The answer to our last question has to be: probably yes but more work needed!

I used to be lots of things, but all people see now is a red man. The universe has gifted me a rare autoimmune skin condition known as erythroderma.


Harmful Effects of Electromagnetic Radiation (EMF)

For most people, it is mustahil to go even a day without coming into contact with electronic devices such as laptops, tablets and cell phones.

People rely on these technological tools for work, communicating with friends and family, school, and personal enjoyment.

What most people don’t seem to realize, however, is that all of these electronic devices are known to emit waves of Electromagnetic Radiation (EMF).

Even people who are aware of this fact often ignore it, but once you know all of the adverse effects this type of radiation can have on your health, you start to pay more attention.

Some people may try to convince you that the negative health effects of Electromagnetic Radiation are simply a hoax thought up by extremely paranoid people. Unfortunately, research is proving that this is not the case at all.

The more research that is done on the matter, the more solid evidence we see that Electromagnetic Radiation emitted from laptop computers, cell phones, and other electronic devices can be harmful to our bodies.

Health Risks of EMFs

The American Academy of Environmental Medicine (AAEM) believes we need to do a better job at understanding the negative health effects from EMF exposure. They have documented significant harmful effects occur from EMF exposure such as genetic damage, reproductive defects, cancer, neurological degeneration and nervous system dysfunction, immune system dysfunction, and many others.

EMF studies repeatedly have shown gene mutations and DNA fragmentation, which can cause cell mutation and cancer.

Anak-anak are particularly at risk from EMF exposure, because a child’s body absorbs more EMF than an adult’s, according to The Stewart Report. In fact, in reviewing these reports, we find that children absorb up to 60 percent more energy per pound of body weight than adults do. Today’s standard for the maximum signal strength of cell phones is known to penetrate an adult head up to one inch. This same cell phone signal can pass completely through a child’s head!

The effects of prolonged EMF exposure can be cumulative and will span childrens’ lifetimes. This exposure is unprecedented and not experienced by previous generations.

Male and female reproductive systems are also at risk from EMF exposure. In one study, Dr. Conrado Avendano and his colleagues of Nascentis Medicina Reproductiva in Cordoba found that “the use of a laptop computer wirelessly connected to the Internet and positioned near the male reproductive organs may decrease human sperm quality.”

Their study found that after a four-hour exposure, 25 percent of the sperm was no longer active compared to 14 percent from sperm samples stored at the same temperature over the same time period and away from the computer. They also noted that 9 percent of the sperm showed DNA damage, three times the damage found in the comparison samples.

Similarly, the Archives of Environmental & Occupational Health reported laptop EMF emissions create health concerns particularly for women and their fetuses. The study found that Swedish EMF standards were exceeded by 71 to 483 percent by the laptops used in the study which, by the standard’s definition, increases risk for tumor development.

Today’s technologies also produce heat. The heat from a laptop warms the upper legs and can cause Toasted Skin Syndrome, a brownish discoloration of the skin.

Many studies have revealed a link between the use of these types of technological devices and various forms of illness, due to a breakdown at the cellular level.

Dr. Martin Pall’s research on EMF radiation reveals 8 ways EMF radiation impacts our bodies:

  1. Nervous system and brain: widespread neurological/neuropsychiatric effects like sleep disturbance/insomnia fatigue/tiredness headache depression/depressive symptoms lack of concentration/attention/cognitive dysfunction dizziness/vertigo memory changes restlessness/tension/anxiety/stress/agitation irritability.
  2. Endocrine/hormonal systems: The steroid hormone levels drop with EMF exposure, whereas other hormone levels increase with initial exposure. The neuroendocrine hormones and insulin levels often drop with prolonged EMF exposure.
  3. Oxidative stress and free radical damage: central roles in essentially all chronic diseases, as well as other body effects.
  4. Cellular DNA attacks: These are related to cancer causation and produce the most important mutational changes in humans and diverse animals, as well as in future generations.
  5. Apoptosis (programmed cell death): This can cause both neurodegenerative diseases and infertility.
  6. Fertility Problems: This can lead to lower sex hormones, lower libido and increased levels of spontaneous abortion and, as already stated, attack the DNA in sperm cells.
  7. Produce excessive intracellular calcium [Ca2+]i and excessive calcium signaling.
  8. Cancer: 15 different mechanisms of EMF radiation’s effect on the cell can cause cancer. Brain cancer, salivary cancer, acoustic neuromas and two other types of cancer go up with cell phone use. People living near cell phone towers have increased cancer rates.

These effects can create many symptoms in our bodies, some which can be felt, and some which we might not know about. Below are just some of the harmful symptoms of Electromagnetic Radiation exposure.

Adakah kamu tahu?

When an EMF radiation source is at zero distance from the body, it’s most dangerous. As you move farther away, risks are reduced. The following chart shows the benefits of distance with corresponding emission reductions related to a 90 MG ELF EMF source.

Source Measurement
(in milligauss)

Pengurangan Risiko

Electromagnetic Radiation Health Effects

Short-Term EMF Health Effects

  • Headaches
  • Tingling or burning sensations
  • Aches and pains
  • Decreased sperm motility
  • Hands hurt
  • Trouble sleeping

Long-Term EMF Health Effects

  • Brain tumors
  • Mental illness
  • Cognitive and Behavioral disorders
  • Immune disorders
  • Cancers – blood, breast and more
  • Mutated cells
  • Fragmented DNA
  • Toasted Skin Syndrome

Electrical Sensitivity

  • Headaches
  • Concentration or memory loss
  • Cognitive impairment
  • Tingling or burning sensations
  • Sleeping problems
  • Aches and pains
  • Hand pain

Technology plays a major role in most people’s lives. While you can certainly try to live without your mobile devices, it might be difficult. So what is a person to do?

Avoiding the effects of Electromagnetic Radiation isn’t exactly easy, as mobile devices that emit it are everywhere and practically inescapable. Well, there are a couple of different steps to take to look out for your health.

The good news is you don’t actually have to give up your devices and there are many ways of protecting yourself.

You can also minimize the potential negative health risks by using EMF shields that block Electromagnetic Radiation. Being unaware of the harmful effects of Electromagnetic Radiation won’t make you immune to them. Your best bet is to educate yourself and find ways to protect yourself.


If you were hit by an EMP pulse, would you notice?

Are there any physiological effects of being hit by an EMP pulse, or is the human body completely unaffected? If an EMP weapon were secretly fired with no electronics nearby, would there be any effect?

Iɽ like to add my own question to this. The Human body uses electricity in many functions. How strong would an EMP need to be to damage or disable, say, the brain? Is it possible to fry the brain this way, or am I thinking too much like cliche TV supervilians?

Neurology background here. I'm in the mining sector now, but this is going to be based on unchanged fundamentals. So a big misconception out there is that the brain/nervous system has actual electricity. When most people think about electricity, such as with computer devices, they are thinking about a flow of electrons which carry charge (negative in their case). The body does not work that way however, there aren't a flow of electrons shooting around between synapses like in those cool animations. There is a CHEMICAL gradient of ions creating a difference in charge between the inside/outside of cells. When neurons communicate through through action potentials "spikes" in charge, they are just allowing the ions (K, Na, Ca) to flow in and out depolarizing and re-polarizing the cell. The beauty is thought that this really does emulate a circuit. The cell membrane (which is separating the charge gradient) acts as a capacitor, the diameter of the axon (the neuron tail that the polarization goes down) and the number of ion channels (holes the ions go through) acts as a resistor, and the flow of the ions themselves are the current. So we can use Ohm's law and then a more specific Nernst Equation to calculate neurons' characteristics, such as the specific voltage at resting potential, human's typical neuron is about -70mV for example. NOW, as for EMPs. They disrupt electromagnetic systems such as electricity that works with electron flow. In simplest of ways it pretty much overloads capacitors causing short circuits. Since the body's "electricity" is a charge gradient of IONS, it would have no effect. Now if you are wondering what initial input tells the cells to start this current, it is all the neurotransmitters you all hear about. Anyways, EMPs are radiation after all and strong enough ones can come from forces (such as nuclear explosions) which will be accompanied by gamma rays. So if a pulse is strong enough, it BOLEH hurt the body, but it would be because of the gamma rays and other stronger radiation. A purely electromagnetic pulse strong enough to hurt someone is pretty unlikely, imagine if the sun somehow exploded and only the electromagnetic rays reached earth. To put things in perspective we can withstand 100KV/m = EMP of an atomic bomb wouldn't even hurt us, but obviously other factors would We would be fried by many other things before the EMP does anything. ini article explains some physics, look at the last section "standardization". Walau bagaimanapun, fine tuned EMPs such as TMS can have effects.

*Aside from the hard science, let's use our common sense, EMPs are used a lot in war, domestic law enforcement, even by criminals. The machines are shut down, the people are never hurt. Let's use real life experience as some supportive proof!

PENTING. If you have a pace maker, an EMP could short circuit that and kill you, but I have never heard of any reported cases. While an electromagnetic pulse which effects electrons wouldn't hurt us, electricity itself CAN hurt us! I don't mean lightning which would kill us from heat, think more like TASERS! The electricity itself isn't causing the muscle contraction, but the electricity is somewhat mimicking neurotransmitters by pretty much tell all your muscle neurons to fire their ion pulse. So it is good to remember that electricity and electromagnetism are different (though I don't know these details since it goes beyond my field).

TLDR: Electromagnetic Pulses effect electron electricity such as with computer circuits by short circuiting them, the body's "circuit" works with chemical ion gradients creating polar charges, which will be unaffected by EMPs meant to disarm electronics. VERY precise EMPs matching action potentials would work (look up TMS), but that would never occur outside of a medical use setting. However large EMPs (like with nuclear explosions or massive sun flare) are accompanied by stronger waves such as gamma rays which would damage you.

edit : I know I wrote a lot, but this is much better than trying to read through all these scientific articles people are posting that are crowded with jargon. I know the feels you feel when I myself try to read my engineering friends' papers. lol

EDIT 2: Extra Info For those of you that know about circuits or just interested. Here is a full explanation 4th picture down , this one shows how complex the diagrams can be, and these are more complex readings straight from my university courses. neuronal level ( you can change the "Chp#" starting from 2 and read the whole thing) and muscle tissue level

Edit 3 Someone brought up something known as TMS. I'll refer to this more scholastic article than Wikipedia. As I commented "When I say electromagnetic force won't effect the neurons I am saying in terms of EMP pulse strength. These are isolated very strong pulses which would never occur alone. For the most part, this is also VERY new, and highly debated to be of any effect on its claims of what it treats for." These pulses are also matched in amplitude, strength, direction, and length to mimic the neuronal queue to fire by using action potentials as a reference. The odds of some EMP pulse being strong enough and matching all these criteria precisely is pretty much impossible. Again, when I was saying the electromagnetic force wouldn't effect the neurons, I meant in terms of any realistic EMP strength. Neurons have a specific neurotransmitter (messenger) that tells the cell to open up the ion channels and start the depolarization. If we create a magnetic field at the correct strength to make the cell think it has started the initial ion flow (reach a depolarized state of around -45mV) then it will spontaneously go all the way to +30mV which is the full depolarized level, and then re-polarize to -70mV, this sequence of events is known as the action potential. So yes we CAN activate neurons with a very specific EMP, but this would never happen in any EMP weapon/natural solar flare/ nuclear explosion.

Edit4: I'm no physics or electrical engineer major so pardon my somewhat vague description of how EMPs work, I am certain though that you all need no worry of some weaponized EMP effecting you. Massive solar flare or nuclear explosion, well, you have more than the EMP to worry your curious little heads about! And again, when I say EMPs won't effect people, I mean in all intense and purposes of the types OP is referring to.


Brain-controlling magnets: how do they work?

If you were to tell people that the technology exists to manipulate the workings of people's brains, they may not believe you. That sort of thing is the stuff of cheap sci-fi B movies. If someone in the real world were to try to develop it, that's exactly the sort of scenario where they'd send James Bond in to stop them before it got too far.

But the fact is that this technology genuinely exists and is widely used in neuroscientific research. It is known as Transcranial magnetic stimulation, or TMS, and as the name suggests it stimulates the brain through the cranium using magnetism.

Magnets and the brain work together a lot. Neuroscience is an increasingly media-friendly area of science, and this is due in part to the increasing use of magnetic resonance imaging (MRI), an invaluable but complex technique that uses intense magnetic fields and radio waves to produce eye-catching images of a working body and brain.

TMS takes this brain-magnet relationship a step further. Rather than just passively looking and observing as the brain goes about its business, these advanced electromagnets actually alter the activity of targeted brain regions by inducing a localised varying magnetic field that causes a weak electrical current. This might sound like a bad idea (like licking a battery, but with your temporal lobe rather than your tongue) but it's perfectly logical. The brain does what it does via electrical currents conducted by neurons, and these currents are what keep our numerous organs and anatomical areas working as one cohesive whole, which is important for things like playing sports and staying alive for more than three seconds. TMS simply causes these electrical currents, which the body generates all the time, to occur at higher levels in certain targeted areas of the brain.

The technique relies on placing a coil (of varying design and composition, depending on what you want to do) on the scalp of your conscious subject, above the area you hope to stimulate, and turning it on. The biophysics behind what occurs is fascinating, albeit complex, but that's essentially the procedure, which is deceptively simple seeming.
What's the point of doing this? Well, inducing currents in a part of the brain causes that part to become more or less active (depending on whether you get neuronal depolarisation or hyperpolarisation). Inducing this activity in selected areas gives us a much better understanding of what these areas do, how certain types of activity influence a person's behaviour or perception, or any number of things like that.

It's not a perfect tool, of course. The direct stimulation is currently limited to the more surface-level areas of the brain, given the precision required and limitations of the technique. This still offers ample scope for areas of interest though, and it is still possible to influence deeper areas of the brain, albeit indirectly, via the myriad connections.

Admittedly, when someone manually induces a current in your verbal processing areas or motor cortex, it can seem a little unnerving. And it certainly looks disconcerting. But all the evidence suggests that, used appropriately, it is a safe procedure.

TMS expert, Cardiff University researcher and occasional Guardian contributor Chris Chambers sums it up quite nicely:

The neural activation caused by TMS can tell us a lot about how the human brain controls different behaviours, ranging from basic functions like the ability to see, hear and touch, to our ability to speak and make motor movements. We can even use TMS to explore how the most advanced part of the brain – the prefrontal cortex – regulates high-level abilities like consciousness, impulse control and working memory. The great advantage of TMS over other neuroscience methods is that we're interfering with the brain rather than simply measuring its activity. Because of the causal nature of this intervention, this can tell us which parts of the brain are necessary for particular functions. There is also some evidence that TMS may assist in the treatment of conditions such as depression and tinnitus, and there is growing evidence that it can help the brain reorganise following a stroke.

I can reassure people as to the safety of TMS, in that I've experienced it several times myself by volunteering for studies at the Cardiff University Brain Research Imaging Centre. I only ever had one experience that alarmed me. During one study, I was having my motor cortex activated, which caused my arm to flail involuntarily (it sounds worrying, but it's essentially a hi-tech version of a doctor testing your reflexes in your knee with a mallet). This experience didn't hurt, and as a neuroscience enthusiast I found the experience cool rather than worrying.

However, the physical set-up of the study and the flailing of my arm meant that I repeatedly came perilously close to slapping the (female) experimenter on the posterior. I am not the sort of man who thinks this move is a good idea, and I can't imagine a scenario where I could more effectively argue that it wasn't done on purpose. But still, I'm glad it never happened.

This technique is still relatively new, but is becoming more widespread, and also has clinical applications, such as the treatment of depression. The media has recently acknowledged it, and we could possibly see this happen more often in the near future.

Of course, as with anything of this nature, people will worry about it. I recently explained TMS to an acquaintance. He asked, if it's possible to non-invasively alter the activity in the brain of a conscious person, what's to stop someone building a magnet that has a greater range, allowing them to shut down important brain regions, perhaps critical ones like the medulla oblongata, in unsuspecting people from a distance.

In other words, couldn't TMS be the perfect assassin's weapon? Fatally disrupting the brain activity of individuals from a distance, leaving no residue or evidence behind?

A valid concern? Not really, no. At present, TMS coils are about 15-20cm across and can directly stimulate the brain to a depth of maybe 2-3cm. And because the field strength declines non-linearly with distance, coupled with the Biot-Savart Law, you'd probably need a coil at least the size of a respectable building to get any decent range from one. This would require an incredible amount of power to run, assuming you could build a coil that size that wouldn't break up under the pressure of using it. If you somehow managed all this, the magnetic field generated wouldn't be nearly focused enough (ie you might be able to target it on a crowd of rioters, but not a small area of a human's brain). Even if this lack of focus wasn't an issue, you'd need the "target" to remain completely still while you aim the coil to line up with their important brain regions.

Suffice to say, if someone starts pointing a multi-storey coil attached to a massive generator at you, you should probably keep moving.

But if TMS worries you, the best way to overcome your concerns is to experience it yourself. There may well be a neuroscience/psychology centre looking for volunteers near you. For those near me in or around Cardiff, you can sign up for the TMS studies at the Cardiff University Psychology School.

For more info, contact Jemma Sedgmond at [email protected]

It's cool, I promise (not that my idea of "cool" is universally applicable).

You can follow Dean Burnett on Twitter, @garwboy, to see if he starts behaving oddly after TMS.


Cell phone use may have effect on brain activity, but health consequences unknown

In a preliminary study, researchers found that 50-minute cell phone use was associated with increased brain glucose metabolism (a marker of brain activity) in the region closest to the phone antenna, but the finding is of unknown clinical significance, according to a study in the February 23 issue of JAMA.

"The dramatic worldwide increase in use of cellular telephones has prompted concerns regarding potential harmful effects of exposure to radiofrequency-modulated electromagnetic fields (RF-EMFs). Of particular concern has been the potential carcinogenic effects from the RF-EMF emissions of cell phones. However, epidemiologic studies of the association between cell phone use and prevalence of brain tumors have been inconsistent (some, but not all, studies showed increased risk), and the issue remains unresolved," according to background information in the article. The authors add that studies performed in humans to investigate the effects of RF-EMF exposures from cell phones have yielded variable results, highlighting the need for studies to document whether RF-EMFs from cell phone use affects brain function in humans.

Nora D. Volkow, M.D., of the National Institutes of Health, Bethesda, Md., and colleagues conducted a study to assess if cell phone exposure affected regional activity in the human brain. The randomized study, conducted between January 1 and December 31, 2009, included 47 participants. Cell phones were placed on the left and right ears and brain imaging was performed with positron emission tomography (PET) with (18F)fluorodeoxyglucose injection, used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Analysis was conducted to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. The PET scans were compared to assess the effect of cell phone use on brain glucose metabolism.

The researchers found that whole-brain metabolism did not differ between the on and off conditions. However, there were significant regional effects. Metabolism in the brain region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher (approximately 7 percent) for cell phone on than for cell phone off conditions. "The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism and normalized metabolism," the authors write. "This indicates that the regions expected to have the greater absorption of RF-EMFs from the cell phone exposure were the ones that showed the larger increases in glucose metabolism."

"These results provide evidence that the human brain is sensitive to the effects of RF-EMFs from acute cell phone exposures," the researchers write. They add that the mechanisms by which RF-EMFs could affect brain glucose metabolism are unclear.

"Concern has been raised by the possibility that RF-EMFs emitted by cell phones may induce brain cancer. &hellip Results of this study provide evidence that acute cell phone exposure affects brain metabolic activity. However, these results provide no information as to their relevance regarding potential carcinogenic effects (or lack of such effects) from chronic cell phone use."

"Further studies are needed to assess if these effects could have potential long-term harmful consequences," the authors conclude.

Editorial: Cell Phone Radiofrequency Radiation Exposure and Brain Glucose Metabolism

The results of this study add information about the possible effects of radiofrequency emissions from wireless phones on brain activity, write Henry Lai, Ph.D., of the University of Washington, Seattle, and Lennart Hardell, M.D., Ph.D., of University Hospital, Orebro, Sweden, in an accompanying editorial.

"Although the biological significance, if any, of increased glucose metabolism from acute cell phone exposure is unknown, the results warrant further investigation. An important question is whether glucose metabolism in the brain would be chronically increased from regular use of a wireless phone with higher radiofrequency energy than those used in the current study. Potential acute and chronic health effects need to be clarified. Much has to be done to further investigate and understand these effects."

The editorial authors also question whether the findings of Volkow et al may be a marker of other alterations in brain function from radiofrequency emissions, such as neurotransmitter and neurochemical activities? "If so, this might have effects on other organs, leading to unwanted physiological responses. Further studies on biomarkers of functional brain changes from exposure to radiofrequency radiation are definitely warranted."

Sumber cerita:

Bahan yang disediakan oleh JAMA and Archives Journals. Nota: Kandungan boleh diedit untuk gaya dan panjang.


Tonton videonya: Gelombang Elektromagnetik Penyerang Otak Manusia, di Tiongkok (Februari 2023).